CYCLOPENTADIENYL-RUTHENIUM AND -OSMIUM CHEMISTRY

XXIV *. SOME COMPLEXES CONTAINING THE OLEFINIC TERTIARY PHOSPHINE 2-CH $\mathbf{2}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}$ (sp): X-RAY STRUCTURES OF ONE ISOMER OF $\operatorname{OsBr}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, AND OF $\operatorname{Ru}\left(\eta^{3}-\mathrm{S}_{2} \mathrm{CCHMeC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}-2\right)(\eta-$ $\mathrm{C}_{5} \mathrm{H}_{5}$), CONTAINING AN η^{3}-DITHIOCARBOXYLATO GROUP

MICHAEL I. BRUCE*, TREVOR W. HAMBLEY, MICHAEL R. SNOW and A. GEOFFREY SWINCER

Jordan Laboratories, Depariment of Physical and Inorgamic Chemtstry, Unversty of Adelade. Adelatde, South Australia 5001 (Australia)
(Recerved April 25th, 1984)

Summary

Reactions between $\mathrm{MX}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{M}=\mathrm{Ru}, \mathrm{X}=\mathrm{Cl} ; \mathrm{M}=\mathrm{Os}, \mathrm{X}=\mathrm{Br})$ and $2-\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}$ afford MX $\left(\eta^{2}-\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$; the Os complex is obtained in two isomeric forms. The X-ray structure of the major isomer shows the $\mathrm{C}=\mathrm{C}$ double bond ($\mathrm{Os}-\mathrm{C}, 2.214,2.195 \AA ; \mathrm{C}=\mathrm{C}, 1.57 \AA$) is almost coplanar with the $\mathrm{Os}-\mathrm{Br}$ vector, with the terminal C cis to Br ; the minor isomer is assumed to have the alternative, more sterically congested conformation, with the $\beta-\mathrm{C}$ cis to Br . The chlororuthenium complex reacts with $\mathrm{NaOMe} / \mathrm{MeOH}$ to give the corresponding hydrido complex, which also exists as two isomers in solution; reaction of this complex with CS_{2} gives the expected dithio acid derivative $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CCHMeC} 6 \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, together with small amounts of a complex assumed to be $\mathrm{Ru}\left[\mathrm{S}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right]\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. The X-ray structure of the major product reveals an unusual $\eta^{3}-\mathrm{S}_{2} \mathrm{C}$ mode of coordination of the dithio acid fragment ($\mathrm{Ru}-\mathrm{S}, 2.418,2.426(1) \AA$; $\mathrm{Ru} \mathrm{C} 2.175(4) \AA)$. Crystals of $\widehat{\mathrm{OsBr}\left(\eta^{2}\right.}-$ $\left.\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ are monoclinic, space group $P 2_{1} / n$, with $a 12.696$ (2), $b 21.719(6), c 15.929(3) \AA, \beta 79.77(2)^{\circ}, Z=8 ; 2867$ data $(I>2.5 \sigma(I))$ were refined to $R=0.040, R_{w}=0.044$. Crystals of $\mathrm{Ru}\left(\eta^{3}-\mathrm{S}_{2} \mathrm{CCHMeC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ are orthorhombic, space group $P b c a$, with $a 8.921(2), b 15.982(9), c 32.216(5) \AA, Z=8$; 1685 data $(I>2.5 \sigma(I))$ were refined to $R=0.027, R_{n}=0.030$.

[^0]
Introduction

Previous papers in this series have described a considerable amount of unusual chemistry associated with complexes containing $\mathrm{ML}_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{M}=\mathrm{Ru}$ or Os ; $\mathrm{L}=$ tertiary phosphine) moieties, and much of this work has been summarised recently [1]. There has been relatively little work reported on complexes containing η^{2}-olcfinic ligands: several neutral complexes having chelating en-yl ligands were described some years ago [2], and a range of cationic complexes of the types $\left[\mathrm{Ru}\left(\eta^{2}-\mathrm{un}\right)(\mathrm{L})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}\left(\mathrm{L}=\mathrm{PMe}_{3} ; \mathrm{L}_{2}=\mathrm{dppe}\right)$ and $\left[\mathrm{Ru}(\mathrm{nbd})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$ (nbd = norbornadiene) [3] have been made. More recently, the phosphine-free $\mathrm{RuCl}(\mathrm{nbd})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ has been obtained [4]. We have made several complexes containing the olefinic tertiary phosphine, $2-\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}$ (sp), with a view to exploring the reactivity of the coordinated olefinic group. Some of these results are reported below.

Results

The complex $\mathrm{RuCl}\left(\eta^{2}-\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (1) is readily prepared by simple ligand exchange between sp and $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. Complex 1 forms yellow-orange crystals, and was identified by analysis, mass spectrometry, and from its ${ }^{1} H$ NMR spectrum (Table 1). In the latter, the olefinic protons resonate at higher field than those in the free ligand, indicating that the vinyl group is π-bonded to the metal atom as found in previous studies. The osmium bromo analogue (2), also orange, was prepared similarly from $\operatorname{OsBr}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, and in contrast with 1, exists in solution in two isomeric forms ($\mathbf{2 a}$ and $\mathbf{2 b}$, Scheme 1), as shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Thus, two sets of olefinic proton resonances, accompanied by

TABLE 1
SOME NMR DATA FOR sp COMPLEXES

Compound	Chemıcal shifts (δ) ${ }^{\text {a }}$			Coupling constants (Hz)			Ref.
	H(1)	H(2)	H(3)	J (12)	J (13)	$J(23)$	
sp	b	4.99	5.45	11.0	17.5	1.3	12
$\mathrm{RuBr}_{2}(\mathrm{sp})_{2}$	3.30	2.08	3.11	9.0	12.5	<1	12
$\mathrm{RuCl}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathbf{1})$	5.40	3.04	-	9.0	90	5.0	*
OsBr(sp) $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathbf{2 a})$	5.31	3.15	4.17	9.0	9.0	5.0	e
OsBr $(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(2 \mathrm{~b})$	5.47	2.92	4.28	9.0	90	5.0	c
$\mathrm{HRu}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (3a)	c	1.75	2.73		${ }^{\text {d }}$		*
IIRu(sp)($\left.+-\mathrm{C}_{5} \mathrm{IH}_{5}\right)$ (3b)	'	1.44	2.96		${ }^{\text {d }}$		c

[^1]two $\mathrm{C}_{5} \mathrm{H}_{5}$ singlets, in the ratio $9 / 1$, are found. The two isomers can be separated by preparative TLC, the major one giving crystals suitable for X-ray study.

Structure of $\operatorname{OsBr}(s p)\left(\eta-C_{5} H_{5}\right)$ (2)

Crystals of 2 contain two independent, discrete molecules of the complex with no contacts significantly shorter than Van der Waals distances. Figure 1 shows one of the molecules of 2 together with the atom numbering scheme employed; the other independent molecule is structurally identical.

The osmium atom is coordinated by the cyclopentadienyl group, the bromine atom, and the phosphorus and $\mathrm{C}=\mathrm{C}$ double bond of the chelating sp ligand. The $\mathrm{Os}-\mathrm{C}(\mathrm{Cp})$ distances (av. 2.223, $2.261 \AA$ (values for the two independent molecules given)) compare well with those found in $\operatorname{Os}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(2.20(1) \AA$, preliminary value) [5], $\mathrm{OsCl}_{(}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(2.214 \AA\right.$ A) [6] and $\left[\mathrm{Os}(\mathrm{NO})\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$ $(2.25 \AA)$ [7], and also show the symmetrical attachment of the ring. The $\mathrm{Os}-\mathrm{Br}$ distance $(2.545,2.510(2) \AA$) can only be compared with that found in $\mathrm{OsBr}_{2}(\mathrm{CO})(\text { pdma })_{2}(2.567(3) \AA)[8]$, and the $\mathrm{Os}-\mathrm{P}$ separation $(2.284,2.285(4) \AA$) is the shortest yet recorded, previously observed values being between $2.320(2) \AA$ in $\mathrm{OsCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ [6], and $2.46 \AA$, in $\mathrm{OsCl}_{2}(\mathrm{HNO})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ [9].

 numbering scheme.

The main feature of interest is the coordination of the olefinic tertiary phosphine. and this is a rare structural characterisation of this relatively uncommon subset of η^{2}-olefin complexes. The Os-C bonds are 2.249, 2.179(14) \AA and 2.182, 2.208(14) \AA to $C(1)$ and $C(2)$, respectively. The $C(1)-C(2)$ separation has lengthened to 1.618 , $1.521(26) \AA$ (av. $1.57 \AA$), and suggests that the vinyl group is strongly bound to the metal atom. In $\mathrm{HOs}_{3}(\mu-\mathrm{SMe})(\mathrm{CO})_{9}\left(\eta-\mathrm{C}_{2} \mathrm{H}_{4}\right), \mathrm{Os}-\mathrm{C}\left(\right.$ to $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)$ are both $2.23(4) \hat{\mathrm{A}}$, while the $C=C$ bond is $1.42 \AA$ [10]. The orientation of the vinyl group is such that the $\mathrm{C}=\mathrm{C}$ double bond is almost coplanar with the $\mathrm{Os}-\mathrm{Br}$ vector, the centre of the bond occupying a position cis to the Br atom in the pseudo-octahedral complex; the P atom occupies the third coordination position of this factal group of ligands. There is some strain in the chelate group, as indicated by the angle at $C(8)\left(112(2)^{\circ}\right.$. normally expected to be ca. 120°) (Fig. 3).

We have not been able to obtain crystals of the minor isomer suitable for X-ray study. However, we recall that similar isomerism has been noted previously for $\mathrm{M}(\mathrm{CO})_{4}(\mathrm{sp})(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$ or W$)$ in solution [11], and for the complex $\mathrm{Ru}(\mathrm{CO})(\mathrm{sp})_{2}$ [12]. In these cases, the isomerism was explained by differences in the orientation of the olefinic group. Consideration of model structures suggests that the minor isomer has the conformation shown in $\mathbf{2 b}$. However. this arrangement is sterically more congested than the major isomer $\mathbf{2 a}$, but we have no evidence for any somerisation process occurring in solution.

Treatment of 1 with NaOMe in methanol [13] afforded the hydride. $\mathrm{HRu}(\mathrm{sp})(\eta$ $\mathrm{C}_{5} \mathrm{H}_{5}$) (3). which also exists in two isomeric forms in solution. The 'H NMR

$M \quad X$

(1)	Ru	Cl
(2)	Os	Br
(3)	Ru	H

(2a)

(2b)

(3)

(4a)

SCHEME 1
spectrum is complex, but indicates that there has been no addition of H^{-}or OMe^{-} to the coordinated olefin. The hydride resonances appear as two doublets of doublets at $\delta-8.56$ and -9.60 , in a $7 / 4$ ratio. This isomeric composition was further confirmed by the ${ }^{1} \mathrm{H}$ resonances of the $\mathrm{C}_{5} \mathrm{H}_{5}$ group, and by appropriate resonances in the ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra. The most likely explanation of the observed isomerism is again a difference in orientation of the olefinic group. Chlorination of $\mathbf{3}$ with CDCl_{3} regenerates $\mathbf{1}$ as a single isomer, confirming that no reaction with the coordinated vinyl group has occurred.

The reaction between hydride 3 and CS_{2} gave a separable mixture of two dark red 1:1 adducts 4 and 5 in a 25/1 ratio. The minor isomer has not been identified unambiguously, but is probably $\mathrm{Ru}\left[\mathrm{S}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right]\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. The major isomer contains no $\mathrm{Ru}-H$ or SCHS resonances, and signals at $\delta 1.90$ and 3.28 show that the hydride has added to the olefinic system to give a CHMe group. The ${ }^{13} \mathrm{C}$ NMR spectrum confirms the presence of a methyl group ($\delta 27.4$), and a doublet at δ 51.3 is assigned to the methine carbon ($J(C P) 11 \mathrm{~Hz}$). The CS carbon gives a doublet at δ 150.6. The IR spectrum contains no bands which can be assigned to $\nu(\mathrm{C}=\mathrm{S})$ modes, but absorptions at 1091,917 and $751 \mathrm{~cm}^{-1}$ can be assigned to characteristic modes of a dithiocarboxylate group. The spectroscopic results are consistent with structure 4 , which has been confirmed by an X-ray study.

Structure of $R u\left(\eta^{3}-S_{2} \mathrm{CCHMeC}_{6} \mathrm{H}_{4} P P h_{2}\right)\left(\eta-C_{5} H_{5}\right)$ (4)

Crystals of 4 contain discrete molecules of the complex with no contacts significantly shorter than the Van der Waals distances. Figure 2 shows a plot of the structure and the atom numbering scheme used.

The ruthenium atom is bonded to the cyclopentadienyl group, a phosphorus atom, and, unusually, to the two sulphur and carbon atoms of the dithiocarboxylate group. The $\mathrm{Ru}-\mathrm{C}(\mathrm{Cp})$ distances (av. $2.215 \AA$, range $2.176-2.264(5) \AA$) show the slight tilting found previously for several ($\eta-\mathrm{C}_{3} \mathrm{H}_{5}$) RuABC complexes, the longer $\mathrm{Ru}-\mathrm{C}$ distances being approximately trans to the phosphorus atom of the chelating ligand. The $\mathrm{Ru}-\mathrm{P}$ bond length $(2.288(1) \AA$) is within the range found for similar complexes.

The attachment of the $\mathrm{S}_{2} \mathrm{C}$ portion of the ligand, with $\mathrm{Ru}-\mathrm{S}$ distances of 2.418, $2.426(1)$ and an $R u-C$ separation of $2.175(4) \AA$, is rare, and to our knowledge, the first of its type found for ruthenium. The $\mathrm{Ru}-\mathrm{S}$ interactions are comparable with those found in $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CH}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]^{+}(2.43(1) \AA)[14]$ and $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CH}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (2.445(3) \AA, trans to P) [15]. Other $\mathrm{Ru}^{11}-\mathrm{S}$ distances are somewhat shorter, however, e.g. 2.323, 2.379(4) \AA in $\mathrm{Ru}\left(\mathrm{SC}_{6} \mathrm{H}_{3} \mathrm{MeSC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)(\mathrm{CO})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ [21], $2.37 \AA$ in $\left[\operatorname{Ru}\left\{\mathrm{S}_{2} \mathrm{CHPMe} \mathbf{2}_{2}\left(\eta^{6}-\mathrm{Ph}\right)\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}$[22], and the $\mathrm{Ru}-\mathrm{S}$ bonds which are trans to S in $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CH}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2.383(3) \AA)$ [15]. The $\mathrm{Ru}-\mathrm{C}$ separation is similar to that found for the central allylic carbons in $\mathrm{Ru}\left(\eta-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2.13(1) \AA$) [16] or $\mathrm{Ru}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)_{2}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2}(2.11(2) \AA$) [17].

Previous examples of dithio acid ligands attached in an $\eta^{3}-\mathrm{S}_{2} \mathrm{C}$ mode appear to be confined to three complexes of the Group VI neighbour of ruthenium, molybdenum, viz. $\operatorname{MoO}\left(\eta^{2}-\mathrm{S}_{2} \mathrm{CSPr}^{1}\right)\left(\eta^{3}-\mathrm{S}_{2} \mathrm{CSPr}^{1}\right)$ [18], $\operatorname{MoO}\left(\eta^{2}-\mathrm{S}_{3} \mathrm{CPh}\right)\left(\eta^{3}-\mathrm{S}_{2} \mathrm{CPh}\right)$ [19] and $\left[\mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)\left(\mu-\eta^{1}, \eta^{3}-\mathrm{S}_{2} \mathrm{CPEt}_{3}\right)\right]_{2}$ [20]. In the latter, one sulphur of the $\eta^{3}-\mathrm{S}_{2} \mathrm{C}$ group bridges to the second Mo atom, resulting in a lengthening of the Mo-S distances. However, the isopropylxanthato complex allows a comparison of the η^{2} -
and η^{3}-bonded ligands. Characteristic features of the $\eta^{3}-\mathrm{S}_{2} \mathrm{C}$ ligand are shorter Mo- C and Mo- S, and longer $C-S$ separations, while angles subtended at Mo and C by the two sulphur atoms are both larger than in the η^{2}-bonded ligand. Similar parameters were found for the dithiobenzoate.

The $\mathrm{RuS}_{2} \mathrm{C}$ portion of the dithio acid ligand in 4 closely resembles the $\mathrm{MoS}_{2} \mathrm{C}$ moieties found in the two oxomolybdenum(IV) complexes. The C-S distances in 4 are equal (at $1.722,1.728(4) \AA$) and are similar to those found in the Mo compounds. Angles $\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{S}(2)$ and $\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(2)$ are $121.3(2)$ and $76.7(1)^{\circ}$, respectively, with other angles at $\mathrm{C}(1)$ being 121.4 (3) and $116.6(3)^{\circ}$, consistent with $s p^{2}$-hybridisation of $\mathrm{C}(1)$, with no direct σ-bond with ruthenium. Dithio acid ligands normally have metal-C separations $\geqslant 3 \AA$, and indeed, values for this parameter are generally not quoted, the $\mathrm{S}_{2} \mathrm{CR}$ ligand being considered to bond only via the two sulphur atoms. In 4, the near coplanarity of the $S(1) S(2) C(1) C(2)$ unit (maximum deviation from the least-squares plane is $\mathrm{C}(1),+0.059 \AA$) is consistent with a dithio-allylic formulation for the $\mathrm{S}_{2} \mathrm{C}$ group, which, however, still acts as a 3-electron donor.

The chelating ligand is slightly distorted at phosphorus, as evidenced by angles $\mathrm{RuP}(1) \mathrm{C}(5)$ and $\mathrm{P}(1) \mathrm{C}(5) \mathrm{C}(6)$, which have opened to $116.3(3)$, and closed to $116.8(3)^{\circ}$, respectively (Fig. 3).

Fig. 2. ORTEP plot [26] of a molecule of $\mathrm{Ru}\left(\eta^{3}-\mathrm{S}_{2} \mathrm{CCHMeC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (4), showing atom numbering scheme.

(2)

(4)

Fig. 3. Angles within the chelate rings of complexes 2 and 4.

Discussion

Replacement of PPh_{3} in $\mathrm{MX}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{M}=\mathrm{Ru}, \mathrm{X}=\mathrm{Cl} ; \mathrm{M}=\mathrm{Os}, \mathrm{X}=\mathrm{Br})$ by the olefinic tertiary phosphine $2-\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}$ (sp), gives the expected complexes 1 and 2, in which the metal atom is chelated by the ligand phosphorus atom and vinyl group. The ruthenium complex can be converted to the corresponding hydride 3 by reaction with NaOMe in MeOH , and it is interesting that there is no addition of methoxide (or hydride) to the coordinated olefin under these conditions. Both complexes 2 and 3, but not 1, exist in solution as a mixture of isomers, probably as a result of differing orientations of the vinyl group. The minor isomer is the more sterically congested, and it is likely that the bulk of the chlorine atom prevents its formation in the case of 1.

Reaction of 3 with CS_{2} occurs readily to give a complex containing the $\eta^{3}-\mathrm{S}_{2} \mathrm{C}$ $\mathrm{CHMeC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}$ ligand. This, which is unusually bonded to ruthenium via an $\eta^{3}-\mathrm{S}_{2} \mathrm{C}$ group, is probably formed by insertion of a CS_{2} molecule into the $\mathrm{Ru}-\mathrm{C}$ bond of an intermediate, itself formed by intramolecular combination of the hydride and olefinic ligands of 3 , the hydrogen migrating to $\mathrm{C}(1)$ to give an RuCHMe group. Such insertions are not uncommon, and in the present case may occur as the result of initial coordination of a CS_{2} molecule to 3 . No evidence was obtained for the formation of an olefinic dithioformato complex by insertion of CS_{2} into the $\mathrm{Ru}-\mathrm{H}$ bond of 3 .

The unprecedented attachment of the dithiocarboxylato ligand by the three atoms of the $S_{2} \mathrm{C}$ moiety, rather than the usual S, S^{\prime} bonding, is the result of the steric constraints of the remainder of the chelate ligand, which preclude the $\mathrm{R} \cdots \mathrm{C}(1)$ separation of $>3.0 \AA$ which is normally associated with the latter mode of bonding of ligands of this type [23]. The bonding must involve the π system of the CS_{2} group, leading to longer $\mathrm{C}-\mathrm{S}$ bonds than found in conventional dithio acid complexes; no direct $\mathrm{Ru}-\mathrm{C} \sigma$-bond is formed, however, and this part of the chelate ligand acts as a three-electron donor.

Experimental

General experimental conditions have been described in earlier papers. A nitrogen atmosphere was used routinely for (i) distilling solvents before use and (ii) carrying out reactions, but no special precautions were taken to exclude air during work-up procedures.

Instrumentation: Perkin-Elmer 457 and 683 double-grating IR spectrophotometers; Bruker WP80 FT NMR (${ }^{1} \mathrm{H}$ at $80 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 20.1 MHz) or HX90E spectrometers (${ }^{31} \mathrm{P}$ at 36.4 MHz); AEI/GEC MS 3074 mass spectrometer (direct insertion, 70 eV ionising energy, 8 kV accelerating potential).
$\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ [24] and $\mathrm{OsBr}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ [25] were obtained as described previously; sp was supplied by Dr M.A. Bennett (Research School of Chemistry, Australian National University).

Preparation of $R u C l(s p)\left(\eta-C_{5} H_{5}\right)$ (1) (with R.C. Wallis)
A mixture of $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(726 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{sp}(288 \mathrm{mg}, 1.0$ mmol) in light petroleum ($100-120^{\circ} \mathrm{C}$ boiling fraction, 45 ml) was heated under reflux for 2 h . Filtration of the warm reaction mixture and cooling afforded a yellow-orange powder which was recrystallized (diethyl ether) to give yellow-orange crystals of $\mathrm{RuCl}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(1)(455 \mathrm{mg}, 93 \%)$ m.p. $252-255^{\circ} \mathrm{C}$ (Found: C, 61.2; $\mathrm{H}, 4.5 \%$; M (mass spectrometry) 490. $\mathrm{C}_{25} \mathrm{H}_{22}$ CIPRu calcd.: C. 61.3: H. 4.5\%: M 490). Infrared: (Nujol) 1313w, 1269(sh), 1259w, 1237w, 1226w, 1190w, 1177w, $1160 \mathrm{~m}, 1102(\mathrm{sh}), 1099 \mathrm{~s}, 1092 \mathrm{~m}, ~ 1088(\mathrm{sh}), 1071 \mathrm{~m}, 1027 \mathrm{w}, 997 \mathrm{~m}, 990 \mathrm{w}, 835(\mathrm{sh})$, 829(sh). $822 \mathrm{~m}, ~ 813 \mathrm{~m}, 783 \mathrm{w}, 771 \mathrm{~s}, 758 \mathrm{~s}, 750 \mathrm{~s}, 745(\mathrm{sh}), 740(\mathrm{sh}), 728 \mathrm{w}, 699 \mathrm{vs}, 687(\mathrm{sh})$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right)$ (couplings in Table 1) $3.04,1 \mathrm{H}, \mathrm{H}(2): 4.65, \mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$ $\left(\mathrm{H}(3)\right.$ resonance under $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 5.40,1 \mathrm{H}, \mathrm{H}(1) ; 7.35-7.96, \mathrm{~m}, 14 \mathrm{H}, \mathrm{Ph} .{ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 51.1, \mathrm{~s}, \mathrm{CH}_{2} ; 69.8$, s. $\mathrm{CH} ; 83.0, \mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5} ; 127.9-136.2, \mathrm{~m}, \mathrm{Ph} .{ }^{31} \mathrm{P}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 71.9$, s (relative to PPh_{3}).

Preparation of $\operatorname{OsBr}(s p)\left(\eta-C_{5} H_{5}\right)$ (2)
The reaction between $\operatorname{OsBr}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(300 \mathrm{mg}, 0.35 \mathrm{mmol})$ and sp (110 $\mathrm{mg}, 0.38 \mathrm{mmol}$) in petroleum spirit ($80100^{\circ} \mathrm{C}$ boiling fraction, 50 ml) in an autoclave ($60 \mathrm{~atm} \mathrm{~N}_{2}, 200^{\circ} \mathrm{C}, 20 \mathrm{~h}$) gave an orange product. Elution on a preparative TLC plate ($3 / 2$ diethyl ether/light petroleum) gave $\operatorname{OsBr}\left(\mathrm{PPh}_{3}\right)_{2}(\eta$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(R_{\mathrm{f}}=0.8,11 \mathrm{mg}, 4 \%\right)$ and $\mathrm{OsBr}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(2)$ as two isomers:
(i) ($R_{\mathrm{f}}=0.7$) as orange crystals from dichloromethane/methanol ($97 \mathrm{mg} .45 \%$) m.p. $216-218^{\circ} \mathrm{C}$ (Found: C, $48.4 ; \mathrm{H}, 3.6: M$ (mass spectrometry), $625 . \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrOsP}$ calcd.: C, $48.2 ; \mathrm{H}, 3.6 \% ; M, 625$). Infrared (Nujol): $\nu(\mathrm{C}=\mathrm{C}) 1587 \mathrm{w} \mathrm{cm}^{-1}$; other bands at 1714 w (br), $1161 \mathrm{w}, 1156 \mathrm{w}, 1099 \mathrm{~m}, 1092 \mathrm{~m}, 1080 \mathrm{w}, 820 \mathrm{w}, 759 \mathrm{~m}, 753 \mathrm{~m}$, $748 \mathrm{~m}, 701(\mathrm{sh}), 698 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right)$ (couplings in Table 1) $3.15,1 \mathrm{H}$, $\mathrm{H}(2) ; 4.17,1 \mathrm{H}, \mathrm{H}(3) ; 4.88$, s. $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5} ; 5.31,1 \mathrm{H}, \mathrm{H}(1) ; 7.4, \mathrm{~m}, \mathrm{Ph} .{ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 32.1, \mathrm{~s}, \mathrm{CH}_{2}: 51.6, \mathrm{~s}, \mathrm{CH} ; 83.1, \mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5} ; 126.6-134.9$, m, Ph.
(ii) ($R_{\mathrm{f}}=0.6$) as orange crystals from dichloromethane/methanol ($10 \mathrm{mg}, 5 \%$) m.p. $224-225^{\circ} \mathrm{C}$ (Found: C, 49.9; H, 3.7; M (mass spectrometry), 625. $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrOsP}$ calcd.: C, $48.2 ; \mathrm{H}, 3.6 \% ; M, 625$). Infrared (Nujol): $\nu(\mathrm{C}=\mathrm{C}) 1587 \mathrm{w} \mathrm{cm}^{-1}$; other bands at 1438s, 1310w, 1248w, 1154m, 1143w, 1100w, 1092m. 1080m, 1028w, 1001w, $925 \mathrm{w}, 829 \mathrm{w}, 818 \mathrm{w}, 770 \mathrm{~m}, 754 \mathrm{~m}, 746 \mathrm{w}, 703 \mathrm{~s}, 697 \mathrm{~s} \mathrm{~cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right)$ (couplings in Table 1) $2.92,1 \mathrm{H}, \mathrm{H}(2): 4.28,1 \mathrm{H}, \mathrm{H}(3): 4.89, \mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}: 5.47,1 \mathrm{H}$, $\mathrm{H}(1) ; 7.4, \mathrm{~m}, \mathrm{Ph} .{ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 34.3, \mathrm{~s}, \mathrm{CH}_{2} ; 52.7, \mathrm{~s}, \mathrm{CH} ; 83.1, \mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}$; 126.6-134.9, m, Ph.

Preparation of $\mathrm{HRu}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (3)

Sodium metal (ca. $40 \mathrm{mg}, 2 \mathrm{mg}$ atom) was added to $\mathrm{RuCl}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(300 \mathrm{mg}$, 0.61 mmol) in MeOH (30 ml). After 1 h , the resulting yellow solid was filtered off,

TABLE 2
POSITIONAL PARAMETERS $\left(\times 10^{4}\right)$ FOR NON-HYDROGEN ATOMS IN $\overline{\operatorname{OsBr}\left(\eta^{2}-\right.}$ $\left.\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (2)

Atom	x	y	z
Os(1)	5651(1)	1391(1)	-1445(1)
Os(2)	5949(1)	3480(1)	3197(1)
$\mathrm{Br}(1)$	4812(2)	1330(1)	127(1)
$\mathrm{P}(1)$	4125(3)	988(2)	-1795(2)
C(1)	5004(12)	2355(6)	-1289(11)
C(2)	5263(12)	2127(7)	- 2271(13)
C(3)	4363(11)	1997(7)	-2766(9)
C(4)	4148(13)	2387(7)	-3428(11)
C(5)	3273(17)	2295(9)	-3818(10)
C(6)	2594(13)	1814(8)	-3545(11)
C(7)	2771(11)	1406(6)	-2939(9)
$\mathrm{C}(8)$	3670(10)	1489(5)	- 2549(8)
C(9)	2350(7)	1430(3)	-701(6)
C(10)	1453(7)	1404(3)	-70(6)
C(11)	1093(7)	845(3)	278(6)
C(12)	1631(7)	311(3)	-6(6)
C(13)	2528(7)	338(3)	$-637(6)$
C(14)	2887(7)	897(3)	-984(6)
C(15)	4275(7)	186(3)	-3192(5)
C(16)	4553(7)	- 357(3)	-3621(5)
C(17)	4906(7)	-850(3)	-3199(5)
$\mathrm{C}(18)$	4980(7)	-798(3)	-2348(5)
C(19)	4701(7)	- 254(3)	-1919(5)
C(20)	4349(7)	238(3)	-2341(5)
C(21)	6796(9)	622(4)	-1386(7)
C(22)	6784(9)	750(4)	-2231(7)
C(23)	7155(9)	1341(4)	-2394(7)
C(24)	7396(9)	1579(4)	- 1649(7)
C(25)	7174(9)	1135(4)	-1026(7)
$\mathrm{Br}(2)$	326(2)	1726(1)	4757(1)
P(2)	-630(3)	1027(2)	3157(2)
$\mathrm{C}(26)$	304(13)	2431(7)	3026(14)
C(27)	391(11)	2071(7)	2198(10)
C(28)	-604(11)	1859(6)	1917(9)
C(29)	-958(13)	2169(7)	1243(9)
C(30)	-1907(13)	1995(8)	987(9)
C(31)	- 2500(12)	1532(7)	1383(10)
C(32)	-2160(12)	1232(7)	2050(10)
C(33)	-1193(9)	1375(6)	2313(3)
C(34)	- 2083(7)	557(3)	4591(6)
C(35)	- 2928(7)	612(3)	5263(6)
C(36)	-3491(7)	1157(3)	5392(6)
C(37)	-3209(7)	1647(3)	4849(6)
C(38)	-2364(7)	1593(3)	4177(6)
C(39)	- 1801(7)	1048(3)	4047(6)
C(40)	$0(7)$	-163(4)	3449(5)
$\mathrm{C}(41)$	266(7)	-766(4)	3239(5)
$\mathrm{C}(42)$	106(7)	- 1002(4)	2468(5)
C(43)	- 320(7)	-635(4)	1906(5)
C(44)	-587(7)	- 32(4)	2115(5)
C(45)	-427(7)	204(4)	2887(5)
C(46)	2695(8)	1730(4)	2795(7)

TABLE 2 (continued)

Atom	x	y	z
$\mathrm{C}(47)$	$2370(8)$	$1374(4)$	$2173(7)$
$\mathrm{C}(48)$	$2038(8)$	$814(4)$	$2530(7)$
$\mathrm{C}(49)$	$2159(8)$	$824(4)$	$3373(7)$
$\mathrm{C}(50)$	$2565(8)$	$1390(4)$	$3536(7)$

washed with MeOH , and dried to give pure $\mathrm{HRu}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (3) ($242 \mathrm{mg}, 87 \%$), m.p. $>140^{\circ} \mathrm{C}$ (dec.) as a mixture of isomers (Found: C, 65.2; H. 5.2; M (mass spectrometry), 456. $\mathrm{C}_{25} \mathrm{H}_{23}$ PRu calcd.: $\mathrm{C}, 65.9: \mathrm{H}, 5.1 \% ; M, 456$). Infrared (Nujol): $\nu(\mathrm{RuH}) 1958 \mathrm{~cm}^{-1}$; other bands at $1582 \mathrm{w}, 1577(\mathrm{sh}), 1169 \mathrm{w}, 1093 \mathrm{~m}, 1068 \mathrm{w}, 801 \mathrm{w}$, $795(\mathrm{sh}), 760 \mathrm{w}, 753 \mathrm{~m}, 743 \mathrm{~m}, 701 \mathrm{~s}, 695 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}: \delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 9.60, \mathrm{dd}, J(\mathrm{PH}) 31$ $\mathrm{Hz}, J(\mathrm{H}(3) \mathrm{H}) 2 \mathrm{~Hz}, \mathrm{RuH}$; -8.56 , dd, $J(\mathrm{PH}) 32 \mathrm{~Hz}, J(\mathrm{H}(3) \mathrm{H}) 2 \mathrm{~Hz}, \mathrm{RuH}^{\star}$ (* denotes the minor isomer); see Table 2 for the olefinic region; 4.36, m, 4.57, s, 4.69, s, $4.79, \mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}+\mathrm{CH} ; 7.0-8.2, \mathrm{~m}, 14 \mathrm{H}, \mathrm{Ph}$ (further assignments cannot be made at this stage). ${ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 26.2, \mathrm{~s}, \mathrm{CH}_{2}: 34.9$, d. $J(\mathrm{CP}) 5 \mathrm{~Hz}, \mathrm{CH}_{2}{ }^{*}$; 49.0, d, $J(\mathrm{CP}) 5 \mathrm{~Hz}, \mathrm{CH}^{\star}$; $51.1, \mathrm{~s}, \mathrm{CH}$; 82.3, s, $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{\star}$; 83.2, s, unassigned; 84.1. s, $\mathrm{C}_{5} \mathrm{H}_{5} ; 124.3-136.3, \mathrm{~m}, \mathrm{Ph} .{ }^{31} \mathrm{P}$ NMR: $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 76.7$, s , RuP: 88.2 , s, $\mathrm{RuP}{ }^{\star}$ (relative to PPh_{3}).

Reaction between $\mathrm{HRu}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and CDCl_{3}
A solution of 6 in $\mathrm{C}_{6} \mathrm{D}_{6}$ within an NMR tube reacted with CDCl_{3} at room temperature. The spectrum of 3 disappeared over 1 h with concomitant formation of peaks due to $\mathrm{RuCl}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (1). This crystallised from solution and was identified by its melting point $\left(252-255^{\circ} \mathrm{C}\right)$.

Reaction between $H R u(s p)\left(\eta-C_{5} H_{5}\right)$ and C_{5}
A solution of $\mathrm{HRu}(\mathrm{sp})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(70 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CS}_{2}(20 \mathrm{ml})$ gradually changed to dark red over 2 d . Purification by separation on a preparative TLC plate gave two isomers of $\mathrm{Ru}\left(\mathrm{CS}_{2}\right)\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right]\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (2/3 diethyl ether/ cyclohexane):
(i) ($R_{\mathrm{f}} \cong 0.7$) as a dark red powder (4) ($42 \mathrm{mg}, 51 \%$) from dichloromethane/hexane, m.p. 202-204 ${ }^{\circ} \mathrm{C}$ (Found: C. 58.5; H, 4.4; M (mass spectrometry), 532. $\mathrm{C}_{26} \mathrm{H}_{23}$ PRuS ${ }_{2}$ calcd.: C, 58.7; H, 4.4\%; M, 532). Infrared (Nujol): $\nu(\mathrm{CS}) 1096$ (sh), $1091 \mathrm{~m}, 917 \mathrm{~s}, 754(\mathrm{sh}), 751 \mathrm{~m} \mathrm{~cm}{ }^{-1}$; other bands at $1312 \mathrm{w}, 1179 \mathrm{w}, 1026(\mathrm{sh}), 1022 \mathrm{w}$, $1009 \mathrm{w}, 986 \mathrm{w}, 978 \mathrm{w}, 850 \mathrm{w}, 831 \mathrm{w}, 809 \mathrm{~m} .764 \mathrm{w}, 740 \mathrm{w}, 700 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR:} \delta\left(\mathrm{CDCl}_{3}\right)$ $1.90, \mathrm{~d}, J(\mathrm{HH}) 6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} ; 3.28, \mathrm{q}, J(\mathrm{HH}) 6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} ; 4.87, \mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$; $7.0-7.4, \mathrm{~m}, 14 \mathrm{H}, \mathrm{Ph} .{ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 27.4, \mathrm{~s}, \mathrm{CH}_{3} ; 51.3, \mathrm{~d}, J(\mathrm{CP}) 11 \mathrm{~Hz}, \mathrm{CH}$; $84.3, \mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5} ; 123.2-138.4, \mathrm{~m}, \mathrm{Ph}: 145.9, \mathrm{~d}, J(\mathrm{CP}) 15 \mathrm{~Hz}, 150.6, \mathrm{~d}, J(\mathrm{CP}) 6 \mathrm{~Hz}$, unassigned.
(ii) ($R_{1} \cong 0.8$) as a red powder (5) ($2 \mathrm{mg}, 2 \%$) from dichloromethane/hexane (M (mass spectrometry), $532 . \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{PRuS} \mathrm{S}_{2}$ calcd.: $M, 532$). (Not enough product was available for further identification.)

Crystallography

In the interest of brevity, data for complex 4 are enclosed in brackets after corresponding data for complex 2 in the following account.

A clear yellow needle-shaped crystal of 2 (red in the case of 4) of approximate dimensions $0.11 \times 0.29 \times 0.09 \mathrm{~mm}(0.16 \times 0.66 \times 0.11 \mathrm{~mm})$ was mounted on a glass fibre with epoxy resin. Lattice parameters at $23^{\circ} \mathrm{C}$ were determined by a least-squares fit to the setting parameters of 25 independent reflections, measured and refined by scans performed on an Enraf-Nonius CAD4 four-circle diffractometer employing graphite monochromated $\mathrm{Mo}-K_{\alpha}$ radiation.

Crystal data. 2, $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrOsP}$, mol. wt. 623.5, monoclinic, space group $P 2_{1} / n$ (variant of No 14, P2 $2 / c$); a 12.696(2), b 21.719(6), c 15.929(3) $\AA, \beta 79.77(2)^{\circ}, D_{m}$ $1.92(2) \mathrm{g} \mathrm{cm}^{-3}, D_{\mathrm{c}} 1.916 \mathrm{~g} \mathrm{~cm}^{-3} ; Z=8, U 4322.4 \AA^{3} ; \mu\left(\mathrm{Mo}-K_{\alpha}\right) 77.64 \mathrm{~cm}^{-1}$, $\lambda\left(\mathrm{Mo}-K_{\alpha}\right) 0.7107 \AA, F(000) 2384$ electrons.

4, $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{PRuS}_{2}$, mol. wt. 531.6; orthorhombic, space group Pbca, a 8.921(2), b $15.982(9)$, с $32.216(5) \AA ; D_{\mathrm{c}} 1.537 \mathrm{~g} \mathrm{~cm}^{-3} ; Z=8, U 4593.2 \AA^{3} ; \mu\left(\mathrm{Mo}-K_{\alpha}\right) 8.89$ $\mathrm{cm}^{-1}, \lambda\left(\mathrm{Mo}-K_{\alpha}\right) 0.7107 \AA, F(000) 2160$ electrons.

Intensity data were collected in the range $1.2^{\circ}<\theta<20^{\circ}$ using an $\omega-n / 3 \theta$ scan, where $n(=2)((=3))$ was optimised by ω / θ profile analysis of a typical reflection.

TABLE 3
BOND LENGTHS (\AA) FOR ONE MOLECULE OF $\widehat{\mathrm{OsBr}}\left(\eta^{2}-\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathbf{2})$

$\mathrm{Br}(1)-\mathrm{Os}(1)$	2.545(2)	$\mathrm{P}(1)-\mathrm{Os}(1)$	2.284(4)
$\mathrm{C}(1)-\mathrm{Os}(1)$	2.249(14)	$\mathrm{C}(2)-\mathrm{Os}(1)$	2.182(19)
$\mathrm{C}(21)-\mathrm{Os}(1)$	2.228(11)	$\mathrm{C}(22)-\mathrm{Os}(1)$	2.222(10)
$\mathrm{C}(23)-\mathrm{Os}(1)$	2.217(10)	$\mathrm{C}(24) \mathrm{Os}(1)$	2.220(11)
$\mathrm{C}(25)-\mathrm{Os}(1)$	2.226(12)	$\mathrm{C}(8)-\mathrm{P}(1)$	1.792(14)
$\mathrm{C}(14)-\mathrm{P}(1)$	1.859(8)	$\mathrm{C}(20)-\mathrm{P}(1)$	1.846 (8)
$\mathrm{C}(2)-\mathrm{C}(1)$	1.618(26)	$\mathrm{C}(3)-\mathrm{C}(2)$	1.526 (24)
$\mathrm{C}(4)-\mathrm{C}(3)$	1.417(23)	$\mathrm{C}(8)-\mathrm{C}(3)$	$1.415(18)$
$\mathrm{C}(5)-\mathrm{C}(4)$	$1.380(28)$	C(6)-C(5)	$1.376(26)$
$C(7)-C(6)$	$1.358(24)$	$\mathrm{C}(8)-\mathrm{C}(7)$	$1.405(21)$
$\mathrm{C}(10)-\mathrm{C}(9)$	1.380 (11)	$\mathrm{C}(14)-\mathrm{C}(9)$	1.380 (10)
$\mathrm{C}(11)-\mathrm{C}(10)$	1.380 (10)	C(12)-C(11)	$1.380(10)$
$\mathrm{C}(13)-\mathrm{C}(12)$	1.380 (11)	$\mathrm{C}(14)-\mathrm{C}(13)$	1.380 (10)
$C(16)-C(15)$	$1.380(10)$	$\mathrm{C}(20)-\mathrm{C}(15)$	$1.380(12)$
C(17)-C(16)	$1.380(11)$	C(18)--C(17)	1.380 (12)
$C(19)-C(18)$	1.380(10)	C(20)-C(19)	1.380(11)
$\mathrm{C}(22)-\mathrm{C}(21)$	$1.378(17)$	C(25)-C(21)	1.378(15)
C(23)-C(22)	1.378(14)	C(24)-C(23)	1.378(17)
$\mathrm{C}(25)-\mathrm{C}(24)$	$1.378(15)$	$\mathrm{C}(33)-\mathrm{P}(2)$	$1.798(14)$
$\mathrm{C}(39)-\mathrm{P}(2)$	1.864(9)	$\mathrm{C}(45)-\mathrm{P}(2)$	1.847(9)
C(27)-C(26)	1.521(26)	C(28)-C(27)	1.487(21)
$\mathrm{C}(29)-\mathrm{C}(28)$	1.407(22)	C(33)-C(28)	1.378(18)
$\mathrm{C}(30)-\mathrm{C}(29)$	1.393(24)	$\mathrm{C}(31)-\mathrm{C}(30)$	1.345 (22)
$\mathrm{C}(32)-\mathrm{C}(31)$	1.380 (23)	$\mathrm{C}(33)-\mathrm{C}(32)$	$1.400(21)$
C(35)-C(34)	1.380(12)	C(39)-C(34)	1.380(11)
$\mathrm{C}(36)-\mathrm{C}(35)$	$1.380(11)$	C(37)-C(36)	1.380(11)
$\mathrm{C}(38)-\mathrm{C}(37)$	$1.380(12)$	C(39)-C(38)	$1.380(11)$
C(41)-C(40)	1.380(12)	C(45)-C(40)	$1.380(12)$
$\mathrm{C}(42)-\mathrm{C}(41)$	$1.380(11)$	C(43)-C(42)	$1.380(12)$
$\mathrm{C}(44)-\mathrm{C}(43)$	1.380 (12)	C(45)-C(44)	1.380(11)
$\mathrm{C}(47)-\mathrm{C}(46)$	$1.378(16)$	C(50)-C(46)	1.378(15)
$\mathrm{C}(48)-\mathrm{C}(47)$	$1.378(13)$	C(49)-C(48)	1.378(17)
$\mathrm{C}(50)-\mathrm{C}(49)$	$1.378(13)$		

TABLE 4
BOND ANGLES (${ }^{\circ}$) OF ONE MOLECULE OF OsBr$\left(\eta^{2}-\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(2)$

$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{Br}(1)$	89.7(1)	$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{Br}(1)$	81.9(4)
$\mathrm{C}(1)-\mathrm{Os}(1)-\mathrm{P}(1)$	943 (4)	$\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{Br}(1)$	122.1(5)
$\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{P}(1)$	80.9(4)	$\mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{C}(1)$	42.8(7)
$\mathrm{C}(21)-\mathrm{Os}(1)-\mathrm{Br}(1)$	94.6(3)	$\mathrm{C}(21)-\mathrm{Os}(1)-\mathrm{P}(1)$	1081 (3)
$\mathrm{C}(21)-\mathrm{Os}(1)-\mathrm{C}(1)$	157 3(5)	$\mathrm{C}(21)-\mathrm{Os}(1)-\mathrm{C}(2)$	142 6(5)
$\mathrm{C}(22)-\mathrm{Os}(1)-\mathrm{Br}(1)$	129.6.3)	$\mathrm{C}(22)-\mathrm{Os}(1)-\mathrm{P}(1)$	966 (3)
$\mathrm{C}(22)-\mathrm{Os}(1)-\mathrm{C}(1)$	146.5(5)	$\mathrm{C}(22)-\mathrm{Os}(1)-\mathrm{C}(2)$	$108.3(5)$
$\mathrm{C}(22)-\mathrm{Os}(1)-\mathrm{C}(21)$	36.1(4)	$\mathrm{C}(23)-\mathrm{Os}(1)-\mathrm{Br}(1)$	1458 (3)
$\mathrm{C}(23)-\mathrm{Os}(1)-\mathrm{P}(1)$	$1187(3)$	$\mathrm{C}(23)-\mathrm{Os}(1)-\mathrm{C}(1)$	112.0 (5)
$\mathrm{C}(23)-\mathrm{Os}(1)-\mathrm{C}(2)$	83.4(5)	$\mathrm{C}(23)-\mathrm{Os}(1)-\mathrm{C}(21)$	60.2(4)
$\mathrm{C}(23)-\mathrm{Os}(1)-\mathrm{C}(22)$	$362(4)$	$\mathrm{C}(24)-\mathrm{Os}(1)-\mathrm{Br}(1)$	112.7(3)
$\mathrm{C}(24)-\mathrm{Os}(1)-\mathrm{P}(1)$	154 6(3)	$\mathrm{C}(24)-\mathrm{Os}(1)-\mathrm{C}(1)$	100.4(5)
$\mathrm{C}(24)-\mathrm{Os}(1)-\mathrm{C}(2)$	96.0(5)	$\mathrm{C}(24)-\mathrm{Os}(1)-\mathrm{C}(21)$	$602(4)$
$\mathrm{C}(24)-\mathrm{Os}(1)-\mathrm{C}(22)$	603 (4)	$\mathrm{C}(24)-\mathrm{Os}(1)-\mathrm{C}(23)$	36.2(4)
$\mathrm{C}(25) \mathrm{Os}(1)-\mathrm{Br}(1)$	85.7(3)	$\mathrm{C}(25) \mathrm{Os}(1) \mathrm{P}(1)$	1429 (3)
$\mathrm{C}(25)-\mathrm{Os}(1)-\mathrm{C}(1)$	121.3(5)	$\mathrm{C}(25)-\mathrm{Os}(1)-\mathrm{C}(2)$	$131.8(5)$
$\mathrm{C}(25)-\mathrm{Os}(1)-\mathrm{C}(21)$	36.0(4)	$\mathrm{C}(25)-\mathrm{Os}(1)-\mathrm{C}(22)$	60.2(4)
$\mathrm{C}(25)-\mathrm{Os}(1)-\mathrm{C}(23)$	60.2(4)	$\mathrm{C}(25)-\mathrm{Os}(1)-\mathrm{C}(24)$	$36.1(4)$
$\mathrm{C}(8)-\mathrm{P}(1)-\mathrm{Os}(1)$	108 6(4)	$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{Os}(1)$	121.4(3)
$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{C}(8)$	101.3(5)	$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{Os}(1)$	1128 (3)
$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{C}(8)$	105.2(5)	$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{C}(14)$	$1059(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Os}(1)$	66.4.8)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Os}(1)$	$70.8(9)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Os}(1)$	116.5(10)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	1210 (12)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	122.3(13)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	120.5(13)
$C(8)-C(3)-C(4)$	117.1(14)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	121.6(15)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	118 6(17)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	1232 (17)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	118.7(13)	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{P}(1)$	1122 (70)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{P}(1)$	127.1(10)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	120.7(13)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	1200 (6)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$1200(7)$
$C(12)-C(11)-C(10)$	$120.0(7)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$120.0(6)$
$C(14)-C(13)-C(12)$	$120.0(7)$	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{P}(1)$	$116.5(5)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{P}(1)$	1234 (6)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$120.0(7)$
$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$	120.0(7)	$C(17)-C(16)-C(15)$	$120.0(8)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	120.0(7)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	1200 (7)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	120.0(8)	$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{P}(1)$	120.2(6)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{P}(1)$	119.5(7)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	$1200(7)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{Os}(1)$	71.7(6)	$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{Os}(1)$	$71.9(6)$
$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	108.0(9)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{Os}(1)$	$72.2(6)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{Os}(1)$	$71.7(6)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	108.0(10)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{Os}(1)$	72.1(6)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{Os}(1)$	72.0 (6)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	108.0(10)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{Os}(1)$	$71.8(6)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{Os}(1)$	72.2(6)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	108.0(9)
$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{Os}(1)$	72.0(7)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{Os}(1)$	$717(7)$
$C(24)-C(25)-C(21)$	108.0(11)	$\mathrm{C}(39)-\mathrm{P}(2)-\mathrm{C}(33)$	100.9(5)
$\mathrm{C}(45)-\mathrm{P}(2)-\mathrm{C}(33)$	106.9(5)	$\mathrm{C}(45)-\mathrm{P}(2)-\mathrm{C}(39)$	$1051(4)$
$\mathrm{C}\left(2{ }^{2}\right)-\mathrm{C}(27)-\mathrm{C}(26)$	119.1(12)	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	118.9(13)
$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(27)$	121.4(13)	$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(29)$	119.7(13)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	120.2(14)	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	120.5(15)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	119.3(15)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	1225 (13)
$\mathrm{C}(28)-\mathrm{C}(33)-\mathrm{P}(2)$	1141 (10)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{P}(2)$	128.1(10)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(28)$	117.7(13)	$\mathrm{C}(39)-\mathrm{C}(34)-\mathrm{C}(35)$	120.0(7)
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	120.0(7)	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(35)$	120.0(8)
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$	120.0(7)	$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(37)$	120097
$\mathrm{C}(34)-\mathrm{C}(39)-\mathrm{P}(2)$	122.7(6)	$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{P}(2)$	117.2(6)

TABLE 4 (continued)

$C(38)-C(39)-C(34)$	$120.0(8)$	$C(45)-C(40)-C(41)$	$120.0(8)$
$C(42)-C(41)-C(40)$	$120.0(8)$	$C(43)-C(42)-C(41)$	$120.0(8)$
$C(44)-C(43)-C(42)$	$120.0(8)$	$C(45)-C(44)-C(43)$	$120.0(8)$
$C(40)-C(45)-P(2)$	$117.6(6)$	$C(44)-C(45)-P(2)$	$122.1(7)$
$C(44)-C(45)-C(40)$	$120.0(8)$	$C(50)-C(46)-C(47)$	$108.0(8)$
$C(48)-C(47)-C(46)$	$108.0(10)$	$C(49)-C(48)-C(47)$	$108.0(9)$
$C(50)-C(49)-C(48)$	$108.0(9)$	$C(49)-C(50)-C(46)$	$108.0(10)$

The ω scan angles and horizontal counter apertures employed were $(0.80+0.35$ tan $\theta)^{\circ}$ and $(2.40+0.50 \tan \theta) \mathrm{mm}$ respectively. Frequent monitoring of three standard reflections indicated that no decomposition occurred during data collection. Data reduction and application of Lorentz and polarisation corrections were performed using programme SUSCAD, while corrections for absorption effects were applied using programme ABSORB [26]. Of the 3560 [1990] independent reflections col-

TABLE 5
POSITIONAL PARAMETERS (C $\times 10^{4}$; all others $\times 10^{5}$) FOR NON-HYDROGEN ATOMS IN $\left.\overline{\mathrm{Ru}\left(\eta^{3}-\mathrm{S}_{2} \mathrm{CCHMeC}_{6} \mathrm{H}_{4}\right.} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (4)

Atom	x	y	z
Ru	72246(4)	9981(2)	43792(1)
S(1)	45306(14)	9049(8)	42877(4)
S(2)	62960(16)	21951(8)	47595(4)
P(1)	77685(11)	14745(6)	37265(4)
$\mathrm{C}(1)$	5375(5)	1876(3)	4317(1)
C(2)	5130(4)	2542(3)	3980(1)
C(3)	3814(6)	3082(3)	4108(1)
C(4)	4987(4)	2158(2)	3549(1)
C(5)	6161(4)	1672(2)	3385(1)
C(6)	6034(5)	1369(3)	2982(1)
C(7)	4795(6)	1539(3)	2740(1)
C(8)	3663(5)	2014(3)	2896(1)
C(9)	3749(4)	2328(2)	3296(1)
C(10)	10467(5)	875(3)	3363(1)
C(11)	11344(5)	276(3)	3167(2)
$\mathrm{C}(12)$	10733(7)	-461(3)	3041(1)
$\mathrm{C}(13)$	9243(6)	-628(3)	3112(1)
C(14)	8367(5)	-43(3)	3314(1)
$\mathrm{C}(15)$	8944(4)	732(3)	3431(1)
C(16)	9333(5)	2871(3)	4027(2)
C(17)	10093(5)	3634(3)	3989(2)
$\mathrm{C}(18)$	10337(5)	3976(3)	3612(2)
C(19)	9857(5)	3578(3)	3252(2)
C(20)	9068(5)	2821(3)	3286(2)
C(21)	8813(4)	2467(3)	3674(1)
C(22)	9411(6)	398(4)	4416(1)
C(23)	9123(5)	811(3)	4793(1)
C(24)	7881(5)	402(3)	4987(1)
$\mathrm{C}(25)$	7407(6)	-232(3)	4724(2)
$\mathrm{C}(26)$	8321(7)	-236(3)	4362(1)

lected, 2867 [1685] with $I>2.50 \sigma(I)$ were considered "observed" and used in the calculations.

Solution and refinement. Both structures were solved by the heavy atom method. For 2, the positions of the two independent osmium atoms were obtained by application of the direct methods routines of SHELX and were used to phase a difference Fourier. This map revealed the Br and P atoms while all other non-hydrogen atoms were located in a subsequent difference map. The "free" phenyl groups and the cyclopentadienyl groups were included as rigid planes (C-C, $1.380 \dot{\mathrm{~A}}$) while the hydrogen atoms were included at calculated sites ($\mathrm{C}-\mathrm{H}, 0.97 \AA$). The hydrogen atoms of the $\mathrm{C}_{6} \mathrm{H}_{4}$ group were not located nor included.

For 4 , the position of the ruthenium atom was determined from a Patterson map and used to phase a difference map which revealed all non-hydrogen atoms. Hydrogen atoms were included at calculated sites $(\mathrm{C}-\mathrm{H}, 0.97 \AA)$.

Blocked-matrix least-squares techniques were used to refine all positional and thermal parameters (anisotropic for Br, Os and P , group isotropic for H) (anisotropic for non-hydrogen, group isotropic for H$)$. A weighting scheme was refined and converged with $w=1.25 /\left(\sigma^{2} F_{0}+0.00077 F_{0}^{2}\right)\left(w=1.00 /\left(\sigma^{2} F_{0}+0.0011 F_{\mathrm{o}}^{2}\right)\right)$, while overall refinement converted with $R=0.040, R_{w}=0.044\left(R=0.027, R_{u}=\right.$ 0.030). The final difference map was structurally featureless with the largest peaks (ca. $2 \mathrm{e} \AA^{-3}\left(<0.6 \mathrm{e}^{-3}{ }^{-3}\right)$) located near the metal atom.

All calculations were performed using the SHELX system of programmes [26]. while scattering factors (neutral Os and Br (neutral Ru)) and anomalous dispersion terms were taken from the International Tables [27].

Final non-hydrogen atom coordinates for 2 and 4 are given in Tables 2 and 3 . respectively. Selected bond distances and angles for these complexes are collected in Tables 4-7. Tables of thermal parameters for non-hydrogen atoms, positional and

TABLE 6
BOND LENGTHS (\AA) FOR $\overparen{\mathrm{Ru}\left(\eta^{3}-\mathrm{S}_{2} \mathrm{CCHMeC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(4)}$

$\mathrm{S}(1)-\mathrm{Ru}$	$2.426(1)$	$\mathrm{S}(2)-\mathrm{Ru}$	$2.418(1)$
$\mathrm{P}(1)-\mathrm{Ru}$	$2.288(1)$	$\mathrm{C}(1)-\mathrm{Ru}$	$2.175(4)$
$\mathrm{C}(22)-\mathrm{Ru}$	$2.177(5)$	$\mathrm{C}(23)-\mathrm{Ru}$	$2.176(5)$
$\mathrm{C}(24)-\mathrm{Ru}$	$2.256(5)$	$\mathrm{C}(25)-\mathrm{Ru}$	$2.264(5)$
$\mathrm{C}(26)-\mathrm{Ru}$	$2.202(5)$	$\mathrm{C}(1)-\mathrm{S}(1)$	$1.728(4)$
$\mathrm{C}(1)-\mathrm{S}(2)$	$1.722(4)$	$\mathrm{C}(5)-\mathrm{P}(1)$	$1836(4)$
$\mathrm{C}(15)-\mathrm{P}(1)$	$1.848(4)$	$\mathrm{C}(21)-\mathrm{P}(1)$	$1.847(4)$
$\mathrm{C}(2)-\mathrm{C}(1)$	$1.537(6)$	$\mathrm{C}(3)-\mathrm{C}(2)$	$1.514(6)$
$\mathrm{C}(4)-\mathrm{C}(2)$	$1.524(6)$	$\mathrm{C}(5)-\mathrm{C}(4)$	$1406(5)$
$\mathrm{C}(9)-\mathrm{C}(4)$	$1.399(6)$	$\mathrm{C}(6)-\mathrm{C}(5)$	$1390(6)$
$\mathrm{C}(7)-\mathrm{C}(6)$	$1.380(7)$	$\mathrm{C}(8)-\mathrm{C}(7)$	$1.360(7)$
$\mathrm{C}(9)-\mathrm{C}(8)$	$1.385(6)$	$\mathrm{C}(11)-\mathrm{C}(10)$	$1.388(7)$
$\mathrm{C}(15)-\mathrm{C}(10)$	$1.395(6)$	$\mathrm{C}(12)-\mathrm{C}(11)$	$1.360(7)$
$\mathrm{C}(13)-\mathrm{C}(12)$	$1.375(8)$	$\mathrm{C}(14)-\mathrm{C}(13)$	$1.381(7)$
$\mathrm{C}(15)-\mathrm{C}(14)$	$1.393(6)$	$\mathrm{C}(17)-\mathrm{C}(16)$	$1.399(7)$
$\mathrm{C}(21)-\mathrm{C}(16)$	$1.386(7)$	$\mathrm{C}(20)-\mathrm{C}(17)$	$1.349(9)$
$\mathrm{C}(19)-\mathrm{C}(18)$	$1.390(8)$	$\mathrm{C}(23)-\mathrm{C}(22)$	$1.403(7)$
$\mathrm{C}(21)-\mathrm{C}(20)$	$1.393(7)$	$\mathrm{C}(24)-\mathrm{C}(23)$	$1.405(7)$
$\mathrm{C}(26)-\mathrm{C}(22)$	$1.415(8)$	$\mathrm{C}(26)-\mathrm{C}(25)$	$1.431(7)$
$\mathrm{C}(25)-\mathrm{C}(24)$	$1.386(7)$		$1.425(7)$

TABLE 7
BOND ANGLES (${ }^{\circ}$) FOR $\mathrm{Ru}\left(\eta^{3}-\mathrm{S}_{2} \mathrm{CCHMeC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3}\right)$ (4)

$S(2)-R u-S(1)$	76.7(1)	$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{S}(1)$	96.8(1)
$\mathbf{P}(1)-\mathrm{R} \mathbf{u}-\mathrm{S}(2)$	106.0(1)	$\mathrm{C}(1)-\mathrm{Ru}-\mathrm{S}(1)$	43.7(1)
$\mathrm{C}(1)-\mathrm{Ru}-\mathrm{S}(2)$	43.6(1)	$\mathrm{C}(1)-\mathrm{Ru}-\mathrm{P}(1)$	82.1(1)
$\mathrm{C}(22)-\mathrm{Ru}-\mathrm{S}(1)$	150.1(2)	$\mathrm{C}(22)-\mathrm{Ru}-\mathrm{S}(2)$	128.9(1)
$\mathrm{C}(22)-\mathrm{Ru}-\mathrm{P}(1)$	90.4(1)	$\mathrm{C}(22)-\mathrm{Ru}-\mathrm{C}(1)$	165.7(2)
$\mathrm{C}(23)-\mathrm{Ru}-\mathrm{S}(1)$	146.8(1)	$\mathrm{C}(23)-\mathrm{Ru}-\mathrm{S}(2)$	93.7(1)
$\mathrm{C}(23)-\mathrm{Ru} \sim \mathrm{P}(1)$	116.3(1)	$\mathrm{C}(23)-\mathrm{Ru}-\mathrm{C}(1)$	137.3(2)
$\mathrm{C}(23)-\mathrm{Ru}-\mathrm{C}(22)$	37.7(2)	$\mathrm{C}(34)-\mathrm{Ru}-\mathrm{S}(1)$	109.7(1)
$\mathrm{C}(24)-\mathrm{Ru}-\mathrm{S}(2)$	89.0(1)	$\mathrm{C}(24)-\mathrm{Ru}-\mathrm{P}(1)$	152.1(1)
$\mathrm{C}(24)-\mathrm{Ru}-\mathrm{C}(1)$	123.3(2)	$\mathrm{C}(24)-\mathrm{Ru}-\mathrm{C}(22)$	62.2(2)
$C(24)-R u-C(23)$	37.6(2)	$\mathrm{C}(25)-\mathrm{Ru}-\mathrm{S}(1)$	94.5(1)
$\mathrm{C}(25)-\mathrm{Ru}-\mathrm{S}(2)$	117.6(1)	C(25)-Ru-P(1)	136.5(1)
$\mathrm{C}(25)-\mathrm{Ru}-\mathrm{C}(1)$	131.3(2)	$\mathrm{C}(25)-\mathrm{Ru}-\mathrm{C}(22)$	$61.7(2)$
$\mathrm{C}(25)-\mathrm{Ru}-\mathrm{C}(23)$	61.6(2)	$\mathrm{C}(25)-\mathrm{Ru}-\mathrm{C}(24)$	35.7(2)
$\mathrm{C}(26)-\mathrm{Ru}-\mathrm{S}(1)$	112.5(2)	$\mathrm{C}(26)-\mathrm{Ru}-\mathrm{S}(2)$	150.9(1)
$\mathrm{C}(26)-\mathrm{Ru}-\mathrm{P}(1)$	100.4(1)	$\mathrm{C}(26)-\mathrm{Ru}-\mathrm{C}(1)$	155.8(2)
$\mathrm{C}(26)-\mathrm{Ru}-\mathrm{C}(22)$	37.7(2)	$\mathrm{C}(26)-\mathrm{Ru}-\mathrm{C}(23)$	63.0(2)
$\mathrm{C}(26)-\mathrm{Ru}-\mathrm{C}(24)$	61.9(2)	$\mathrm{C}(26)-\mathrm{Ru}-\mathrm{C}(25)$	37.2(2)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{Ru}$	60.4(1)	$\mathrm{C}(1)-\mathrm{S}(2)-\mathrm{Ru}$	60.7(1)
$\mathrm{C}(5)-\mathrm{P}(1)-\mathrm{Ru}$	116.3(1)	$\mathrm{C}(15)-\mathrm{P}(1)-\mathrm{Ru}$	112.3(1)
$C(15)-\mathrm{P}(1)-\mathrm{C}(5)$	104.2(2)	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{Ru}$	118.4(1)
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(5)$	101.1(2)	$C(21)-\mathrm{P}(1)-\mathrm{C}(15)$	102.6(2)
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{Ru}$	75.9(2)	$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{Ru}$	75.7(2)
$S(2)-C(1)-S(1)$	121.3(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Ru}$	128.3(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$	121.4(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(2)$	116.6 (3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	108.2(4)	$C(4)-C(2)-C(1)$	112.1(3)
$C(4)-C(2)-C(3)$	114.4(3)	$C(5)-C(4)-C(2)$	120.2(3)
$\mathrm{C}(9) \mathrm{C}(4)-\mathrm{C}(2)$	121.2(4)	$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)$	118.4(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{P}(1)$	116.8(3)	$C(6)-C(5)-P(1)$	124.3(3)
$C(6)-C(5)-C(4)$	118.9(4)	$C(7)-C(6)-C(5)$	121.7(4)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	119.6(4)	$C(9)-C(8)-C(7)$	120.5(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(4)$	120.9(4)	$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)$	120.5(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	120.5(5)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	120.4(5)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	119.6(5)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	121.3(4)
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{P}(1)$	121.9(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{P}(1)$	120.1(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	117.6(4)	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)$	119.8(5)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	120.6(5)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	121.1(5)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	118.9(5)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.2(5)$
$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{P}(1)$	119.7(3)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{P}(1)$	120.9(3)
$C(20)-C(21)-C(16)$	119.4(4)	$\mathrm{C}(23) \cdots \mathrm{C}(22)-\mathrm{Ru}$	71.1 (3)
$\mathrm{C}(26)-\mathrm{C}(22)-\mathrm{Ru}$	72.1(3)	$\mathrm{C}(26)-\mathrm{C}(22)-\mathrm{C}(23)$	108.5(4)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{Ru}$	71.2(3)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{Ru}$	74.2(3)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	107.8(4)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{Ru}$	68.2(3)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{Ru}$	72.5(3)	$C(25)-C(24)-C(23)$	107.6(4)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{Ru}$	71.8(3)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{Ru}$	69.0(3)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	109.3(5)	$\mathrm{C}(22)-\mathrm{C}(26)-\mathrm{Ru}$	70.2(3)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{Ru}$	73.8(3)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(22)$	106.7(4)

thermal parameters for hydrogen atoms, and calculated and observed structure factors are available from the authors.

Acknowledgements

We are grateful for the generous gift of the ligand sp from Dr M.A. Bennett (Research School of Chemistry, Australian National University, Canberra). We thank the ARGS for grants in support of this work. AGS was the holder of a Commonwealth Postgraduate Research Award.

References

1 M.A. Bennctt, M.I. Bruce and T.W Mathewon, in G. Whkinson. F.G. A. Stone and E W, Abel (Eds. h Comprehensive Organometalle Chemetry, Pergamon Press. Oxford. 1982, Vol. 4. section 32.3, p. 691
2 T. Blackmore, M.I. Brace and F.G.A. Stome. J. Chern. Soc, Dalton Trans.. (1974) 106: M 1 Bruce. RC.F. Gardner. J.A.K. Howard, F.G.A. Stone, M. Welling and P Woodward, J Chem Soc. Dalton Trans.. (1977) 621; MI Bruce, R.C.F. Gardner and F.GA Stone. I Chem Soc. Dalton Trans, (1979) 906.

3 S.G. Davies and F. Scott, J. Organomet Chem., 188 (1980) C41, P,M. Trechel and D A. Komar. Inorg. Chim Acta, 42 (1980) 277; M.I. Bruce, T.W. Hambley, J.R. Rodgers. M.R Snow and FS. Wong, Aust. J. Chem., 35 (1982) 1323: R. Unón, L.A. Oro, M.A. Ciriano, M,M. Naval, M.C Apreda. C. Foces-Foces. F.H. Cano and S. Garcia-Blanco, J. Organomet. Chem, 256 (1983) 331.

4 I.D. Thley. R.H. Grubbs and J E. Bercaw, Organometalles. 3 (1984) 274
5 M.I. Bruce and A.H. White, unpublished results
6 MII Bruce, M.L. Willtams, J.M. Patrick and A.H Whte, Aust J. Chem., 36 (1983) 1353.
7 M.I Brace. I. H Tomkins, F.S. Wong. B.W Skelton and A H White. J. Chem Soc., Dation Trans. (1982)687.
\$ F. Botomicy, I.I.B. Lin and P.S White, J, Chem. Sow.. Dalton Trans.. (1978) 1726.
9 R.D. Wilkon and J.A Ibers. Inorg Chem, 18 (1979) 336.
10 B.F.G. Johnson, I. Lews, D. Pippard and F.R Famhty, J. Chem Soc. Chem. Commun , 1978) 557.
11 M.A. Bennett and L.B. Tomkins, J. Organotnel. Chem. 51 (1973) 289.
12 M.A. Bennett, R.N. Johnson and I.B. Tomkins, J, Amer. Chem. Soc, 96 (1974) 61
13 M.I. Bruce, M.G. Humphrey, A.G. Swincer and R.C. Walhs, Aust, J, Chem., 37 (1984) in press.
14 M. Lang, Acta Crystallogr., B34 (1978) 2100.
15 R.O. Harris. L.S. Sadavoy, S.C. Nyburg and F.H. Flokard. I. Chem. Soc., Dalton Trans.. (1973) 2646; A.E. Kalinin. A.I. Gusev and Yu.T Struchkow. Zh. Sirukt, Khım, 14 (1973) 859.

16 A.E. Smith, Inorg. Cherm., 11 (1972) 2306.
17 R.A. Marsh, 3 Howard and P. Woodward, J. Chem. Soc., Datton Trans, (1973) 778
18 J. Hyde, K. Venkatasubrananman and J. Zubsea, lnorg. Chen, 17 (1978) 414
19 M. Tatsumisago, G Matsubayasha, T Tanaka, S. Nisłgakı and K Nakatsu. Chem. Lett., (1979) 889.
20 C. Btanchim, C.A. Ghuards, A. Meli, S. Midoilant and A Orlandin, J. Organomet Chem., 219 (1981) C13.
21 S.D. Killops. S.AR. Knox, G.H. Rudug and AJ, Welch, J. Chem Soc, Chem. Commen., (1978) 480
22 T.V. Ashworth, E. Singleton and M. Laing, J. Chem. Soc.. Chem. Commun, (1076) 875
23 P.V. Yaneff, Coord. Chem. Rev.. 23 (1977) 183.
24 M 1. Bruce, C. Hamester, A.G Swincer and R.C. Wallis, Inorg Synth, 21 (1982) 78
25 M.I. Bruce and N.J. Windsor, Aust, J. Chem. 30 (1977) 1601.
26 Programmes used for the crystal structure determnattons included: SUSCAD. Data reduction programme for the CAD4 diffractometer", Unversity of Sydney, 1976: ABSORts. "Programme for absorption correction'. Uaversity of Sydney. 1976. SHELX. 'Programme for wrystal structure determination', G.M. Sheldrick, Unversuty of Cambridge. 1976: ORTEP. C.K. Johnson. Report ORNL-3794. Oak Ruge Natunal Laboratory, Oak Ruge, TN, 1970.
27 International Tables for X-Ray Crystallography, J.A thers and W.C. Hamiton (EAs, Kynoch Press, Birmingham, 1974, Vol. 4.

[^0]: * For Part XXIII see ref. 13.

[^1]: ${ }^{a}$ The assignment of $\mathbf{H}(2)$ and $\mathbf{H}(3)$ has been made on the basis of $J(13)>J(12)$. When $J(12)=J(13)$, the resonance at lower field is arbitrarily assigned to $\mathrm{H}(3)$. ${ }^{b}$ Under Ph resonance. ' Under $\mathrm{C}_{5} \mathrm{H}_{5}$ resonance. ${ }^{d}$ Not assigned. ${ }^{e}$ This work.

